Novice iz sveta astronomije

mamomu

gps navigator
21. jul 2007
2.493
0
36
53
Varoš!
Da ne bom odpiral vedno nove teme bom novice iz sveta astronomije postal kar tu. Če ima kdo kakšno astro novico naj jo napiše kar v ta post

1. Hubble počasi v pokoj - pripravlja se James Webb

The James Webb Space Telescope reached a mission-readiness landmark March 2, 2010 when its first primary mirror segment was cryo-polished to its required prescription as measured at operational cryogenic temperatures. This achievement sets the stage for a successful polishing process for the remaining 18 flight mirror segments.

Northrop Grumman Corporation is leading Webb's design and development effort for NASA's Goddard Space Flight Center, Greenbelt, Md.

"Many predicted it would take us multiple iterations to successfully polish these mirror segments to achieve the correct optical prescription at the telescope's operating temperatures, but we did it on our first try," said Scott Willoughby, Webb telescope Program Manager for Northrop Grumman Aerospace Systems. "All our budgets and schedules are based on this and it's a confirmation of the basic plan we proposed ten years ago."

"The completion of cryogenic polishing of the engineering development unit primary mirror segment is a hugely significant milestone for the Webb telescope project that demonstrates that our primary mirror segments can be completed on schedule while meeting the performance necessary for science," said Lee Feinberg, NASA Webb Optical Telescope Element Manager at NASA Goddard.

Cryogenic polishing, or cryo-null figuring, ensures that when the mirror reaches its extremely cold operating temperature, its shape will conform to the exact optical prescription required to collect accurate infrared images of distant stars and galaxies. The engineering development unit mirror, which will be used as a flight spare, was cryotested in the X-Ray and Cryogenic Facility (XRCF) at NASA's Marshall Space Flight Center in Huntsville, Ala. The mirror polishing was performed at Tinsley Laboratories, Inc. in Richmond, Calif. More testing is planned, however, as we build the telescope up from the segments.

"For validation purposes, we're planning four sets of completely different cross checks and verification tests to authenticate the outcome of the mirror cryotests," said Scott Texter, Northrop Grumman Webb Optical Telescope Element Manager. "If any discrepancies surface, we can then investigate and re-verify."

Principal optical contractor Ball Aerospace will conduct separate verification tests using different computer generated holographic null tools. NASA Goddard will use its own testing equipment and measurement methods in its clean room; testing at Johnson Space Flight Center will use a reflective null tool manufactured by optical integration and test partner ITT; and polishing partner Tinsley Labs will make measurements using their own independent method of calibrating their computer generated holographic null tools.

The James Webb Space Telescope is the next-generation premier space observatory, exploring deep space phenomena from distant galaxies to nearby planets and stars. The Webb Telescope will give scientists clues about the formation of the universe and the evolution of our own solar system, from the first light after the Big Bang to the formation of star systems capable of supporting life on planets like Earth. Expected to launch in 2014, the telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

100302142327-large.jpg
 

mamomu

gps navigator
21. jul 2007
2.493
0
36
53
Varoš!
Most Extreme White Dwarf Binary System Found With Orbit of Just Five Minutes

An international team of astronomers has shown that the two stars in the binary HM Cancri definitely revolve around each other in a mere 5.4 minutes. This makes HM Cancri the binary star with by far the shortest known orbital period. It is also the smallest known binary. The binary system is no larger than 8 times the diameter of the Earth which is the equivalent of no more than a quarter of the distance from the Earth to the Moon.

The binary system consists of two white dwarfs. These are the burnt- out cinders of stars such as our Sun, and contain a highly condensed form of helium, carbon and oxygen. The two white dwarfs in HM Cancri are so close together that mass is flowing from one star to the other. HM Cancri was first noticed as an X-ray source in 1999 showing a 5.4 minutes periodicity but for a long time it has remained unclear whether this period also indicated the actual orbital period of the system. It was so short that astronomers were reluctant to accept the possibility without solid proof.

The team of astronomers, led by Dr Gijs Roelofs of the Harvard-Smithsonian Center of Astrophysics, and including Professor Tom Marsh and Dr Danny Steeghs at the University of Warwick in the UK, have now used the world's largest telescope, the Keck telescope on Hawaii, to prove that the 5.4 minute period is indeed the binary period of the system. This has been done by detecting the velocity variations in the spectral lines in the light of HM Cancri. These velocity variations are induced by the Doppler effect, caused by the orbital motion of the two stars revolving around each other. The Doppler effect causes the lines to periodically shift from blue to red and back.

The observations of HM Cancri were an ultimate challenge due to the extremely short period that needed to be resolved and the faintness of the binary system. At a distance of close to 16,000 light years from Earth, the binary shines at a brightness no more than one millionth of the faintest stars visible to the naked eye.

Professor Tom Marsh from the University of Warwick said; "This is an intriguing system in a number of ways: it has an extremely short period; mass flows from one star and crashes down onto the equator of the other in a region comparable in size to the English Midlands where it liberates more than the Sun's entire power in X-rays. It could also be a strong emitter of gravitational waves which may one day be detected from this type of star system."

Dr Danny Steeghs of the University of Warwick, said " A few years ago we proposed that HM Cancri was indeed an interacting binary consisting of two white dwarfs and that the 5.4 minute period was the orbital period. It is very gratifying to see this model confirmed by our observations, especially since earlier attempts had been thwarted by bad weather."

The article describing the observations of HM Cancri will be published in the Astrophysical Journal Letters of March 10, 2010

"This type of observations is really at the limit of what is currently possible. Not only does one need the biggest telescopes in the world, but they also have to be equipped with the best instruments available," explains Professor Paul Groot of the Radboud University Nijmegen in the Netherlands.

"The binary HM Cancri is a real challenge for our understanding of stellar and binary evolution," adds Dr Gijs Nelemans of the Radboud University."We know the system must have come from two normal stars that somehow spiralled together in two earlier episodes of mass transfer, but the physics of this process is very poorly known. The system is also a big opportunity for general relativity. It must be one of the most copious emitters of gravitational waves. These distortions of space-time we hope to detect directly with the future LISA satellite, and HM Cancri will be a cornerstone system for this mission."

100309091450-large.jpg
 

mamomu

gps navigator
21. jul 2007
2.493
0
36
53
Varoš!
Shocking Recipe for Making Killer Electrons

Take a bunch of fast-moving electrons, place them in orbit and then hit them with the shock waves from a solar storm. What do you get? Killer electrons. That's the shocking recipe revealed by ESA's Cluster mission.

Killer electrons are highly energetic particles trapped in Earth's outer radiation belt, which extends from 12 000 km to 64 000 km above the planet's surface. During solar storms their number grows at least ten times and they can be dislodged, posing a threat to satellites. As the name suggests, killer electrons are energetic enough to penetrate satellite shielding and cause microscopic lightning strikes. If these electrical discharges take place in vital components, the satellite can be damaged or even rendered inoperable.

On 7 November 2004, the Sun blasted a solar storm in Earth's direction. It was composed of an interplanetary shock wave followed by a large magnetic cloud. When the shock wave first swept over the ESA-NASA solar watchdog satellite SOHO, the speed of the solar wind (the constant flow of solar particles) suddenly increased from 500 km/s to 700 km/s.

Shortly afterwards, the shock wave hit Earth's protective magnetic bubble, known as the magnetosphere. The impact induced a wave front propagating inside the magnetosphere at more than 1200 km/s at geostationary orbit (36 000 km altitude) around Earth. The quantity of energetic electrons in the outer radiation belt started to increase too, according to Cluster's RAPID instruments (Research with Adaptive Particle Imaging Detectors). Cluster's four satellites sweep around an elliptical orbit, coming as close as 19 000 km and going out as far as 119 000 km.

Understanding the origin of the killer electrons has been a focus for space weather researchers. Thanks to previous data collected by Cluster and other space missions, scientists proposed two methods by which electrons can be accelerated to such harmful energy levels. One relies on very low frequency (VLF) waves of 3-30 kHz, the other on ultra low frequency (ULF) waves of 0.001-1 Hz. This latest work disentangles the problem.

Which waves are responsible? Both of them. "Both VLF and ULF waves accelerate electrons in Earth's radiation belts, but with different timescales. The ULF waves are much faster than the VLF, due to their much larger amplitudes," says Qiugang Zong from Peking University (China) and University of Massachusetts Lowell (USA), lead author of the paper describing this result.

The data show that a two-step process causes the substantial rise of killer electrons. The initial acceleration is due to the strong shock-related magnetic field compression. Immediately after the impact of the interplanetary shock, Earth's magnetic field lines began wobbling at ultra low frequencies. In turn, these ULF waves were found to effectively accelerate the seed electrons provided by the first step, to become killer electrons.

Although the analysis has been a long one, the results have been worth the wait. Now astronomers know how killer electrons are accelerated. "Data from the four Cluster satellites allowed the identification of ULF waves able to accelerate electrons," says Malcolm Dunlop, Rutherford Appleton Laboratory, Didcot (UK) and co-author of this study.

Thanks to this analysis of Cluster data, if the killer electrons happen to be ejected towards Earth, we now know that they can strike the atmosphere within just 15 minutes. "These new findings help us to improve the models predicting the radiation environment in which satellites and astronauts operate. With solar activity now ramping up, we expect more of these shocks to impact our magnetosphere over the months and years to come," says Philippe Escoubet, ESA's Cluster mission manager.

100311101659.jpg